SISTEM REFRIGERASI



                                                     SISTEM REFRIGERASI

a. TUJUAN

Setelah mempelajari kegiatan belaja rini dengan diberikan satu unit system refrigerasi lengkap dengan satu set peralatan diharapkan mampu mengindentifikasi komponen sistem refrigerasi dengan prosedur yang benar.

b. URAIAN MATERI I
 Umum.

Sistem refrigerasi sangat menunjang peningkatan kualitas hidup manusia. Kemajuan dalam bidang refrigerasi akhir-akhir ini adalah akibat dari perkembangan sistem kontrol yang menunjang kinerja dari sistem refrigerasi.

Apalikasi dari sistem refrigerasi tidak terbatas, tetapi yang paling banyak digunakan adalah untuk pengawetan makanan dan pendingin suhu, misalnya lemasi es gambar 1 freezer, cold strorage, air conditioner/AC Window, AC split gambar 2 dan AC mobil. Dengan perkembangan teknologi saat ini, refrigeran (bahan pendingin) yang di pasarkan dituntut untuk ramah lingkungan, disamping aspek teknis lainnya yang diperlukan. Apapun refrigeran yang dipakai, semua memiliki kelebihan dan kekurangan masing-masing oleh karena itu, diperlukan kebijakan dalam memilih refrigerant yang paling aman berdasarkan kepentingan saat ini dan masa yang akan datang.

Selain itu, tak kalah pentingnya adalah kemampuan dan ketrampilan dari para

teknisi untuk mengaplikasikan refrigeran tersebut, baik dalam hal mekanisme kerja

sistem, pengontrolan maupun keselamatan kerja dalam pemakaiannya.

Gambar 1. Freezer Gambar 2. AC Splite
.
Siklus Refregerasi
Prinsip terjadinya suatu pendinginan di dalam sistem refrigerasi adalah penyerapan
kalor oleh suatu zat pendingin yang dinamakan refrigeran. Karena kalor yang berada disekeliling refrigeran diserap, akibatnya refregeran akan menguap, sehingga temperatur di sekitar refrigeran akan bertambah dingin. Hal ini dapat terjadi mengingat penguapan memerlukan kalor.

Di dalam suatu alat pendingin (misal lemari es) kalor ditesarap di“ evaporator” dan dibuang ke “kondensor” Perhatikan skema dengan lemari es yang sederhana gambar 3. Uap refrigeran yang berasal dari evaporator yang bertekanan dan bertemperatur rendah masuk ke kompresor melalui saluran hisap. Di kompresor, uap refrigerant tersebut dimampatkan, sehingga ketika ke luar dari kompresor, uap refrigeran akan bertekanan dan bersuhu tinggi, jauh lebih tiggi dibanding temperatur udara sekitar. Kemudian uap menunjuk ke kondensor melalui saluran tekan. Di kondensor, uap tersebut akan melepaskan kalor, sehingga akan berubah fasa dari uap menjadi cair (terkondensasi) dan selanjutnya cairan tersebut terkumpul di penampungan cairan refrigeran. Cairan refrigeran yang bertekanan tinggi mengalir dari penampung refrigean ke aktup ekspansi. Keluar dari katup ekspansi tekanan menjadi sangat berkurang dan akibatnya cairan refrigeran bersuhu sangat rendah. Pada saat itulah cairan tersebut mulai menguap yaitu di evaporator, dengan menyeap kalor dari sekitarnya hingga cairan refrigeran habis menguap. Akibatnya evaporator menjadi dingin. Bagian inilah yang dimanfaatkan untuk mengawetkan bahan makanan atau untuk mendinginkan ruangan. Kemudian uap rifregean akan dihisap oleh kompresor dan demikian seterusnya proses-proses tersebut berulang kembali. 






 Komponen Sistem Refrigerasi 
Mekanik mesin pendingin terdiri dari beberapa komponen yang masing-masing dihubungkan dengan menggunakan pipa-pipa tembaga atau selang pada akhirnya merupakan sebuah system yang bekerja secara serempak ( simultan )
Komponen-komponen mesin pendingin yang digunakan adalah sebagai berikut :

a. Kompresor

b. Condensor

c. Filter / Strainer

d. Flow Control

e. Evaporator

f. Pipa refrigerant.



Fungsi dan cara kerja kompresor torak



Kompresor gambar 4 merupakan jantung dari sistem refrigerasi. Pada saat yang sama komrpesor menghisap uap refrigeran yang bertekanan rendah dari evaporator dan mengkompresinya menjadi uap bertekanan tinggi sehingga uap akan tersirkulasi.

Kebanyakan kompresor-kompresor yang dipakai saat ini adalah dari jenis torak. Ketika torak bergerak turun dalam silinder, katup hisap terbuka dan uap refrigerant masuk dari saluran hisap ke dalam silinder. Pada saat torak bergerak ke atas, tekanan uap di dalam silinder meningkat dan katup hisap menutup, sedangkan katup tekan akan terbuka, sehingga uap refrigean akan ke luar dari silinder melalui saluran tekan menuju ke kondensor.

Kebocoran katup kompresor dan terbakarnya motor kompresor.

Beberapa masalah pada kompresor adalah bocornya katup terkabarnya motor kompresor. Jika katup tekan bocor ketika torak menghisap uap dari saluran hisap, sebagian uap yang masih tertinggal disaluran tekan akan terhisap kembali ke dalam silinder, sehingga mengakibatkan efisiensinya berkurang. Hal yang sama juga dapat terjadi bila katup hisap bocor ketika torak menekan uap ke saluran tekan, sebagian uap di alam silinder akan tertekan kembali ke saluran hisap. Untuk mencegah kebocoran torak terhadap dinding silinder, biasanya dipasang cincin torak. Jika cincin ini aus atau pecah, refrigeran dapat bocor sehingga “tekanan tekan” akan lebih rendah dan menyebabkan kekurangan efisiensi. Jika motor kompresor terbakar, terutama untuk jenis hermetik dan semi hermetik, dan jika rifrigeran yang dipakai adalah CFC dan HCFC, maka akan timbul asam yang bersifat korosif.


Pengecekan kompresor.

Beberapa tes sederhana dapat dilakukan untuk mengetahui jika ada kebocoran yang nyata dalam kompresor. Pertama jika saluran hisap disumbat, maka saluran hisap kompresor akan vakum/hampa udara. Jika katup hisap atau katup tekan atau torak bocor, refrigeran yang akan dipompa oleh kompresor tak akan sebesar yang dikehendaki. Tes kebocoran yang lain diperlihatkan jika kompresor dapat mempertahankan vakum yang dapat dicapai. Jika kompresor dimatikan, tekanan hisap diamati apakah turun dengan nyata. Jika katup hisap atau katup tekan torak bocor, tekanan bisap akan turun. Tes yang

sama dapat dilakukan dengan mengamati “tekanan tekan”. Jika saluran tekan disumbat, kompresor akan mempertahankan tekanan tersebut. Jika katup tekan bocor tekanan tekan akan turun. 

Energi mekanik pada motor penggerak dirubah menjadi energi pneumatis oleh kompresor, sehingga zat pendingin beredar dalam instalasi sistem AC.

Secara umum kompresor ada 2 jenis.

1. Kompresor model torak : terdiri dari beberapa bentuk gerak torak :

Tegak lurus 
Memanjang 

C. Aksial 

D. Radial 

E. Menyudut (model V) 


Untuk menghisap dan menekan zat pendingin dilakukan oleh gerakan torak di dalam silinder kompreso

2. Kompresor model rotari

Gerakan rotor di dalam stator kompresor akan menghisap dan menekan zat pendingin.

A. Kompresor torak gerak tegak lurus

1. Katub hisap 
2. Katub tekan 
3. Saluran hisap / tekan 
4. Dudukan katub 
5. Torak 
6. Silinder 
7. Batang penggerak 
8. Poros engkol 

Cara kerja
Langkah hisap Langkah tekan
— Katub hisap terbuka, akibat hisapan dari torak 

— Zat pendingin masuk ke dalam silinder 

— Katup tekan tertutup 

— Katup tekan terbuka, akibat tekanan torak terhadap zat pendingin 

— Katup hisap tertutup 
Konstruksi katup – katup dan dudukannya :
Pada waktu hisap katup hisap melengkung ke bawah akibat hisapan torak … saluran hisap terbuka, sebaliknya pada langkah tekan, katup tekan akan melangkung ke atas.

Tidak ada komentar:

Posting Komentar